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Abstract

We introduce an approach to computing and comparing
Covariance Descriptors (CovDs) in infinite-dimensional
spaces. CovDs have become increasingly popular to ad-
dress classification problems in computer vision. While
CovDs offer some robustness to measurement variations,
they also throw away part of the information contained in
the original data by only retaining the second-order statis-
tics over the measurements. Here, we propose to over-
come this limitation by first mapping the original data to
a high-dimensional Hilbert space, and only then compute
the CovDs. We show that several Bregman divergences can
be computed between the resulting CovDs in Hilbert space
via the use of kernels. We then exploit these divergences for
classification purpose. Our experiments demonstrate the
benefits of our approach on several tasks, such as material
and texture recognition, person re-identification, and action
recognition from motion capture data.

1. Introduction
In this paper, we tackle the problem of employing

infinite-dimensional Covariance Descriptors (CovDs) for

classification. CovDs are becoming increasingly popular in

many computer vision tasks due to their robustness to mea-

surement variations [24]. Such descriptors take the form

of, e.g., region covariance matrices for pedestrian detec-

tion [24] and texture categorization [8], human joint covari-

ances for activity recognition [10], and covariance matrices

of the local Brownian motion of water molecules in diffu-

sion tensor imaging (DTI) [20].

As the name implies, CovDs are obtained by comput-

ing the second order statistics of feature vectors extracted
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at a finite number of observation points, such as the pix-

els of an image. The resulting descriptors are Symmetric

Positive Definite (SPD) matrices and naturally lie on non-

linear manifolds known as tensor, or SPD manifolds. As

a consequence, Euclidean geometry is often not appropri-

ate to analyze CovDs [20]. To overcome the drawbacks of

Euclidean geometry and better account for the Riemannian

structure of CovDs, state-of-the-art methods make use of

non-Euclidean metrics (e.g., [20, 11]). In particular, Breg-

man divergences have recently been successfully employed

in a number of CovD-based applications [26, 22, 8, 5, 21].

Nevertheless, all previous studies work with relatively

small CovDs (i.e., at most 50×50, to the best of our knowl-

edge) built from feature vectors whose dimension is typi-

cally much smaller than the number of observations. While

this could be thought of as a filtering operation, it also im-

plies that the information encoded in such a CovD is inher-

ently poorer than the information jointly contained in all the

observations. Recently, it was shown that CovDs could be

mapped to Reproducing Kernel Hilbert Space (RKHS) via

the use of SPD-specific kernels [8, 11]. While this may, to

some degree, enhance the discriminative power of the low-

dimensional CovDs, it is unlikely to be sufficient to entirely

recover the information lost when constructing them.

In this paper, we overcome this issue by introducing

an approach to building and analyzing infinite-dimensional

CovDs from a finite number of observations. To this end,

we map the original features to RKHS and compute CovDs

in the resulting space. Since the dimensionality of the

RKHS is much larger than the dimensionality of the ob-

servations, the resulting descriptor will encode more in-

formation than a CovD constructed in the original lower-

dimensional space, and is therefore better suited for classi-

fication.

In practice, of course, the mapping to RKHS is unknown

and the CovDs cannot be explicitly computed. However,

here, we show that several Bregman divergences can be de-

rived in Hilbert space via the use of kernels, thus alleviating
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the need for the explicit mapping. In particular, we consider

the Burg [22], Jeffreys [26] and Stein [22] divergences, that

have proven powerful to analyze SPD matrices. These di-

vergences allow us to perform classification in Hilbert space

via a simple nearest-neighbor (NN) classifier, or by making

use of more sophisticated distance-based classifiers, such as

support vector machines (SVM) with a Gaussian kernel.

We evaluated the resulting descriptors on the tasks of

image-based material, texture and virus recognition, person

re-identification, and action recognition from motion cap-

ture data. Our experimental evaluation clearly evidences

the importance of keeping all the data information by map-

ping to Hilbert space before computing the CovDs. Further-

more, our empirical results show that, with this new rep-

resentation, a simple NN classifier can achieve accuracies

comparable to those of much more sophisticated methods,

and that these accuracies can even be boosted beyond the

state-of-the-art when using more powerful classifiers.

2. Theory of Bregman Divergences

In this section, we review several Bregman divergences

and discuss the properties that motivated our decision to use

them to compare CovDs in RKHS.

Throughout the paper, we use bold upper-case letters to

denote matrices (e.g., C) and bold lower-case letters for col-

umn vectors (e.g., x). The n × n identity matrix is writ-

ten as In. GL(n) denotes the general linear group, i.e.,

the group of real invertible n × n matrices. Sn
++ is the

space of n × n symmetric positive definite matrices, i.e.,

C ∈ Sn
++ iff aTCa > 0, ∀a ∈ R

n \ {0}.

Definition 2.1. Let ζ : Sn
++ → R be a strictly con-

vex and differentiable function defined on the symmetric
positive cone Sn

++. The Bregman matrix divergence dζ :
Sn
++ × Sn

++ → [0,∞) is defined as

dζ(C1,C2) = ζ(C1)− ζ(C2)−〈∇C2ζ,C1−C2〉 , (1)

where 〈A,B〉=Tr
(
ATB

)
, and ∇C2

ζ is the gradient of ζ
evaluated at C2. The Bregman divergence is non-negative
and definite (i.e., dζ(C1,C2) = 0 iff C1 = C2).

Definition 2.2. The Euclidean (Frobenius) distance is ob-
tained by using ζ(C) = Tr(CTC) as seed function in the
Bregman divergence of Eq. 1.

Definition 2.3. The Burg, or B-, divergence is obtained by
using ζ(C) = − logdet(C) as seed function in the Breg-
man divergence of Eq. 1, where det(·) denotes the determi-
nant of a matrix. The B-divergence can be expressed as

B(C1,C2) = Tr(C1C
−1
2 )− logdet

(
C1C

−1
2

)− n .
(2)

While Bregman divergences exhibit a number of useful

properties [12], their general asymmetric behavior is often

counter-intuitive and undesirable in practical applications.

Therefore, here, we also consider two symmetrized Breg-

man divergences, namely the Jeffreys and the Stein diver-

gences.

Definition 2.4. The Jeffreys, or J-, divergence is obtained
from the Burg divergence, and can be expressed as

J(C1,C2) =
1

2
B(C1,C2) +

1

2
B(C2,C1)

=
1

2
Tr(C1C

−1
2 )− 1

2
logdet

(
C1C

−1
2

)
+

1

2
Tr(C2C

−1
1 )− 1

2
logdet

(
C2C

−1
1

)− n

=
1

2
Tr(C1C

−1
2 ) +

1

2
Tr(C2C

−1
1 )− n . (3)

Definition 2.5. The Stein, or S-, divergence (also known
as the Jensen-Bregman LogDet divergence [5]) is also
obtained from the Burg divergence, but through Jensen-
Shannon symmetrization. It can be written as

S(C1,C2) =
1

2
B

(
C1,

C1+C2

2

)
+
1

2
B

(
C2,

C1+C2

2

)
= logdet

(
C1+C2

2

)
−1

2
logdet

(
C1C2

)
. (4)

2.1. Properties of Bregman divergences

Here, we present the properties of Bregman divergences

that make them a natural choice as a measure of dissimi-

larity between two CovDs. In particular, we discuss these

properties in comparison to the popular Affine Invariant

Riemannian Metric (AIRM) on Sn
++ [20], which was intro-

duced as a geometrically-motivated way to analyze CovDs.

Invariance to affine transformations:

As indicated by the name, the AIRM was designed to be

invariant to affine transformations, which often is an at-

tractive property in computer vision algorithms. In our

case, the B-divergence exhibits the same invariance prop-

erty. More specifically, given A ∈ GL(n), B(C1,C2) =
B(AC1A

T ,AC2A
T ). This can easily be shown from

the definition of the B-divergence. Since the J- and S-

divergences are obtained from the B-divergence, it can eas-

ily be verified that they inherit this affine invariance prop-

erty. Furthermore, these two divergences are also invariant

to inversion, i.e.,

J(C1,C2) = J(C−1
1 ,C−1

2 )

S(C1,C2) = S(C−1
1 ,C−1

2 ).

Finally, we also note that B(C1,C2) = B(C−1
2 ,C−1

1 ).
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Divergence

Name
Formula Invariance

P.D. Gaussian

Kernel

Frobenius
∥∥C1 −C2

∥∥2

F
Rotation Yes

Burg Tr(C1C
−1
2 )− logdet

(
C1C

−1
2

)− n Affine No

Jeffreys 1
2 Tr

(
C1C

−1
2 +C2C

−1
1

)− n Affine Yes

Stein logdet
(
1
2C1 +

1
2C2

)− 1
2 logdet

(
C1C2

)
Affine Partial

Table 1: Properties of several Bregman divergences on Sn
++.

Positive definite Gaussian kernel:

Recently, kernel methods have been successfully employed

on Riemannian manifolds [8, 11]. In particular, an attractive

solution is to form a kernel by replacing the Euclidean dis-

tance in the popular Gaussian kernel with a more accurate

metric on the manifold. However, the resulting kernel is not

necessarily positive definite for any metric. In particular,

the AIRM does not yield a positive definite Gaussian kernel

in general. In contrast, both the J- and the S-divergences

admit a Hilbert space embedding via a Gaussian kernel.

More specifically, for the J-divergence, it was shown

in [9] that the kernel

kJ(C1,C2) = exp{−βJ(C1,C2)}, (5)

is Conditionally Positive Definite (CPD). CPD kernels cor-

respond to Hilbertian metrics and can be exploited in a wide

range of machine learning algorithms. An example of this

is kernel SVM, whose optimal solution was shown to only

depend on the Hilbertian property of the metric [9]. Note

that while the kernel kJ(·, ·) was claimed to be positive defi-

nite [17], we are not aware of any formal proof of this claim.

For the S-divergence, the kernel

kS(C1,C2) = exp{−βS(C1,C2)}, (6)

is not positive definite for all β > 0. However, as was

shown in [22], kS(·, ·) is positive definite iff

β ∈
{
1

2
,
2

2
, · · · , n− 1

2

}
∪
{
τ ∈ R : τ >

1

2
(n− 1)

}
.

Note that, here, we are not directly interested in posi-

tive definite Gaussian kernels on Sn
++ to derive our infinite-

dimensional CovDs, but only to learn a kernel-based classi-

fier with the divergences between our infinite-dimensional

CovDs as input. The properties of the Bregman divergences

that we use in the remainder of this paper are summarized

in Table 1.

3. Covariance Descriptors in RKHS
In this section, we show how CovDs can be computed

in infinite-dimensional spaces. To this end, we first review

some basics on Hilbert spaces.

Definition 3.1. A Hilbert space is a (possibly infinite-
dimensional) inner product space which is complete with
respect to the norm induced by the inner product.

An RKHS is a special type of Hilbert space with the ad-

ditional property that the inner product can be defined by a

bivariate function known as the reproducing kernel. For an

RKHS
(H, 〈·, ·〉H

)
on a non-empty set X with φ : X → H

there exists a kernel function k : X × X → R such that

k(x,y) = 〈φ(x), φ(y)〉H, ∀x,y ∈ X . The concept of re-

producing kernel is typically employed to recast algorithms

that only exploit inner products to high-dimensional spaces

(e.g., SVM).

Given these definitions, we now turn to the prob-

lem of computing a covariance matrix in an RKHS. Let

X =
[
x1|x2| · · · |xm

]
be an n×m matrix, obtained by

stacking m independent observations xi ∈ R
n from an im-

age or a video. The covariance descriptor C ∈ Sn
++ is

defined as

C =
1

m

m∑
i=1

(
xi − μ

)(
xi − μ

)T
= XJJTXT , (7)

where μ =
1

m

∑m
i=1 xi is the mean of the observations, J =

m−3/2(mIm − 1m×m) is a centering matrix, and 1m×m is

a square matrix with all elements equal to 1.

Let φ : R
n → H be a mapping to an RKHS whose

corresponding Hilbert space H has dimensionality |H| (|H|
could go to ∞). Following Eq. 7, a CovD in this RKHS can

be written as

CX = ΦXJJTΦT
X , (8)

where ΦX =
[
φ(x1)|φ(x2)| · · · |φ(xm)

]
. If |H| > m,

then CX is rank-deficient, which would make any diver-

gence derived from the Burg divergence indefinite. More

precisely, the resulting matrix would be on the boundary of

the positive cone, which would make it at an infinite dis-

tance from any positive definite matrix, not only for Burg-

based divergences, but also according to the AIRM.

Here, we address this issue by exploiting ideas devel-

oped in the context of covariance matrix estimation from

a limited number of observations [2, 27]. More specifi-

cally, we seek to keep the positive eigenvalues of CX in-

tact and replace the zero ones with a very small positive
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number ρ, thus making the CovD positive definite. First,

using a standard result [23], we note that the positive eigen-

values of CX , denoted by ΛX , can be computed from

JTΦT
XΦXJ = JTKX,XJ , where KX,X is the m × m

kernel matrix whose elements are defined by the kernel

function k(xi,xj). By eigenvalue decomposition, we can

write

JTKX,XJ = V XΛXV T
X . (9)

This lets us write a (regularized) estimate of CX as

ĈX = ΦXWXW T
XΦT

X + ρI|H| , (10)

where

WX = JV X

(
IX − ρΛ−1

X

) 1
2 , (11)

with IX the identity matrix whose dimension is the num-

ber of positive eigenvalues of CX [27]. Note that this

derivation can also be employed to model points in H with

lower-dimensional latent variables by retaining only the

top r eigenvalues and eigenvectors of JTKX,XJ to form

WX [3].

4. Bregman Divergences in RKHS
In this section, we derive different Bregman divergences

for the infinite-dimensional CovDs introduced in Section 3.

In these derivations, we will make use of the equivalence

W T
XΦT

XΦXWX = ΛX − ρIX , (12)

whose derivation is provided in supplementary material.

Euclidean Metric:

The Frobenius norm can easily be computed as

δ2e(ĈX , ĈY ) =
∥∥ΦXWXW T

XΦT
X − ΦY W Y W T

Y ΦT
Y

∥∥2

F

=
∥∥ΛX − ρIX

∥∥2

F
+

∥∥ΛY − ρIY
∥∥2

F
− 2

∥∥W T
Y KY ,XWX

∥∥2

F
.

Note that, although not a desirable property [20], the Eu-

clidean metric is definite for positive semi-definite matrices,

which makes it possible to set ρ to zero.

Burg Divergence:

Using the Sylvester determinant theorem [7], we first note

that

det
(
ĈX

)
= det

(
ΦXWXW T

XΦT
X + ρI|H|

)
= ρ|H| det

(
IX +

1

ρ
W T

XΦT
XΦXWX

)
= ρ|H| det

(
IX +

1

ρ
(ΛX − ρIX)

)
= ρ|H| det

(
ρ−1ΛX

)
. (13)

Then, from the Woodbury matrix identity [7], we have

Ĉ
−1

Y =
(
ΦY W Y W T

Y ΦT
Y + ρI|H|

)−1

=
1

ρ
I|H| − 1

ρ
ΦY W Y Λ−1

Y W T
Y ΦT

Y . (14)

This lets us write,

Tr
(
ĈXĈ

−1

Y

)
= |H|+Tr

(1
ρ
ΛX − IX

)−Tr
(
IY − ρΛ−1

Y

)
− 1

ρ
Tr

(
W T

XKX,Y W Y Λ−1
Y W T

Y KY ,XWX

)
. (15)

By combining Eqs. 13 and 15, we then obtain

BH
(
ĈX , ĈY

)
= Tr

(1
ρ
ΛX − IX

)− Tr
(
IY − ρΛ−1

Y

)
− 1

ρ
Tr

(
W T

XKX,Y W Y Λ−1
Y W T

Y KY ,XWX

)
+ logdet

(
ρ−1ΛY

)
− logdet

(
ρ−1ΛX

)
. (16)

Note that the Burg divergence is independent of |H|. This

property is inherited by the Jeffreys and Stein divergences

derived below.

Jeffreys Divergence:

From the definition in Section 2, the Jeffreys divergence can

be obtained directly from the Burg divergence. This yields

JH
(
ĈX , ĈY

)
=

1

2ρ
Tr

(
ΛX − ρIX

)
+

1

2ρ
Tr

(
ΛY − ρIY

)
− 1

2ρ
Tr

(
W T

XKX,Y W Y Λ−1
Y W T

Y KY ,XWX

)
− 1

2ρ
Tr

(
W T

Y KY ,XWXΛ−1
X W T

XKX,Y W Y

)
− 1

2
Tr

(
IX − ρΛ−1

X

)− 1

2
Tr

(
IY − ρΛ−1

Y

)
. (17)

Stein Divergence:

To compute the Stein divergence in H, let us first define

Q =

[
WX 0
0 W Y

]
. (18)

This lets us write

ĈX + ĈY

2
= ρI|H| +

1

2

[
ΦX ΦY

]
QQT

[
ΦT

X

ΦT
Y

]
. (19)
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Similarly as in Eq. 13, det
(
(ĈX + ĈY )/2

)
becomes

ρ|H| det

(
I|H| +

1

2ρ

[
ΦX ΦY

]
QQT

[
ΦT

X

ΦT
Y

])

=ρ|H| det

(
IX+Y +

1

2ρ
QT

[
ΦT

X

ΦT
Y

] [
ΦX ΦY

]
Q

)

=ρ|H| det

(
IX+Y +

1

2ρ
QT

KX,Y Q

)
,

where

KX,Y =

[
KX,X KX,Y

KY ,X KY ,Y

]
. (20)

Therefore, we have

SH
(
ĈX , ĈY

)
= logdet

(
IX+Y +

1

2ρ
QT

KX,Y Q
)

− 1

2
logdet

(
ρ−1ΛX

)− 1

2
logdet

(
ρ−1ΛY

)
. (21)

4.1. Practical Considerations

When computing divergences in RKHS, it is desirable

to minimize the effect of the parameter ρ, and thus have

divergences that do not depend on its inverse. To this end,

let us assume that the same number of eigenvectors were

kept to build CX and CY . In this case, the Stein divergence

can be written as

ŜH
(
ĈX , ĈY

)
= logdet

(
ρIX+Y +

1

2
QT

KX,Y Q
)

− 1

2
logdet (ΛX)− 1

2
logdet (ΛY ) , (22)

where the term ρIX+Y can be thought of as a regularizer for
1

2
QT

KX,Y Q. For the Jeffreys divergence, we can define

ĴH
(
ĈX , ĈY

)
= lim

ρ→0
2ρJH

(
ĈX , ĈY

)
=

− Tr
(
W T

XKX,Y W Y Λ−1
Y W T

Y KY ,XWX

)
− Tr

(
W T

Y KY ,XWXΛ−1
X W T

XKX,Y W Y

)
+Tr(ΛX) + Tr(ΛY ) . (23)

In our experiments, we used the definitions of Eqs. 23

and 22.

4.2. Computational Complexity

Here we compare the complexity of computing JH(·, ·)
and SH(·, ·) against that of J(·, ·) and S(·, ·). Let X ∈
R

n×m and Y ∈ R
n×m be two given sets of observation,

with m 
 n.

Computing the n × n CovDs based on Eq. 7 requires

O(n2m). The inverse of an n× n SPD matrix can be com-

puted by Cholesky decomposition in 1
2n

3 flops. Therefore,

computing the J-divergence requires 2n2m + 2n2.3 + n3

flops, which is dominated by 2n2m. The complexity of

computing the determinant of an n× n matrix by Cholesky

decomposition is O( 13n
3). Therefore, computing the S-

divergence requires 2n2m+n2.3+ 2
3n

3 flops, which is again

dominated by 2n2m.

In RKHS, computing KX,X , KY ,X and KX,Y requires

m2 flops for each matrix. Therefore, evaluating Eq. 9 re-

quires for m3 flops. Assuming that r, r < m, eigenvectors

are used to create WX in Eq. 11, computing JH according

to Eq. 17 requires 2m3 + 3m2 + 4m2r + 2mr2. For SH,

evaluating Eq. 21 takes 6m3 + 3m2 + 8m2r+ 8mr2 flops.

Generally speaking, the complexity of computing the

Jeffreys and Stein divergences in the observation space is

linear in m while it is cubic when working in RKHS. Our

experimental evaluation shows, however, that working in

RKHS remains practical. To illustrate this, we compare

the runtimes required to compute the Stein divergence be-

tween 500, 000 pairs of CovDs on S10
++ using Eq. 4 and

Eq. 22. Each CovD on S10
++ was obtained from m = 100

observations. In the observation space, computing the Stein

divergence on an i7 machine using Matlab took 53s. For

SH, it took 452s, 566s and 868s when keeping 10, 20 and

50 eigenvectors to estimate the covariances, respectively.

While slower, these runtimes remain perfectly acceptable,

especially when considering the large accuracy gain that

working in RKHS entails, as evidenced by our experiments.

5. Experimental Evaluation
We now present our empirical results obtained with the

infinite-dimensional CovDs and their Bregman divergences

defined in Sections 3 and 4. In particular, due to their sym-

metry and the fact that they yield valid Gaussian kernels,

we utilized the Jeffreys and Stein divergences, and relied on

two different classifiers for each divergence: A simple near-

est neighbor classifier, which clearly evidences the benefits

of using infinite-dimensional CovDs, and an SVM classi-

fier with a Gaussian kernel, which further boosts the perfor-

mance of our infinite-dimensional CovDs.

The different algorithms evaluated in our experiments

are referred to as:

J/S-NN: Jeffreys/Stein based Nearest Neighbor clas-

sifier on CovDs in the observation space.

J/S-SVM: Jeffreys/Stein based kernel SVM on

CovDs in the observation space.

JH/SH-NN: Jeffreys/Stein based Nearest Neighbor

classifier on infinite-dimensional CovDs.

JH/SH-SVM: Jeffreys/Stein based kernel SVM on

infinite-dimensional CovDs.

We also provide the results of the PLS-based Covariance

Discriminant Learning (CDL) technique of [25], which can
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Figure 1: Sample images from the virus dataset [14].

Table 2: Recognition accuracies for the virus dataset [14].

Method Recognition Accuracy
B-NN 56.6%± 2.7
J-NN 60.3%± 5.3
S-NN 60.7%± 5.4
CDL [25] 69.5%± 3.1
J-SVM 73.9%± 4.0
S-SVM 76.5%± 3.3

BH-NN 63.5%± 3.4
JH-NN 66.7%± 4.2
SH-NN 67.1%± 4.3

JH-SVM 81.1%± 3.4
SH-SVM 81.2%± 2.9

be considered as the state-of-the-art for CovD-based clas-

sification. In all our experiments, we used the RBF kernel

to create infinite-dimensional CovDs. The parameters of

our algorithm, i.e., the RBF bandwidth and the number of

eigenvectors r, were determined by cross-validation.

5.1. Virus Classification

As a first experiment, we used the virus dataset [14]

which contains 15 different virus classes. Each class has

100 images of size 41 × 41 that were segmented automat-

ically [14]. Samples from the virus dataset are shown in

Fig. 1. We used the 10 splits provided with the dataset in a

leave-one-out manner, i.e., 10 experiments with 9 splits for

training and 1 split as query.
At each pixel (u, v) of an image, we computed the 25-

dimensional feature vector

xu,v =

[
Iu,v,

∣∣∣∣ ∂I∂u
∣∣∣∣ ,

∣∣∣∣∂I∂v
∣∣∣∣ ,

∣∣∣∣ ∂
2I

∂u2

∣∣∣∣ ,
∣∣∣∣∂

2I

∂v2

∣∣∣∣ ,
∣∣G0,0

u,v

∣∣, · · · , ∣∣G4,5
u,v

∣∣ ]T

,

where Iu,v is the intensity value, Go,s
u,v is the response of a

2D Gabor wavelet [15] with orientation o and scale s, and

| · | denotes the magnitude of a complex value. Here, we

generated 20 Gabor filters at 4 orientations and 5 scales.

We report the mean recognition accuracies over the 10

runs in Table 2. The NN results clearly show that the CovDs

computed in RKHS are more discriminative than the ones

built directly from the original features. Note that apply-

ing kernel SVM boosts the performance of all the CovDs.

Note also that our simple NN scheme in RKHS achieves

comparable performance to the more involved CDL. Our

Figure 2: Samples from the KTH-TIPS2b material dataset [4].

Table 3: Recognition accuracies for the KTH-TIPS2b material dataset [4].

Method Split#1 Split#2 Split#3 Split#4 Average
J-NN 72.6% 72.8% 64.8% 64.3% 68.6%
S-NN 72.5% 73.4% 64.6% 64.6% 68.8%
CDL [25] 83.5% 75.6% 71.5% 74.5% 76.3%
J-SVM 77.4% 76.6% 71.4% 73.3% 74.7%
S-SVM 83.6% 80.9% 73.1% 75.4% 78.3%

JH-NN 79.1% 75.7% 69.9% 67.7% 73.1%
SH-NN 78.1% 76.3% 69.2% 67.8% 72.9%

JH-SVM 85.2% 78.5% 76.4% 79.7% 79.9%
SH-SVM 85.1% 79.8% 74.0% 81.6% 80.1%

JH/SH-SVM methods outperform all the baselines. Here,

for each split, the runtimes were on average 130s for the

Stein divergence in observation space and 1180s for SH,

which remains perfectly practical.

In addition to the baselines in Table 2, we evaluated the

performance of Local Binary Patterns (LBP) [19] and Ga-

bor filters [15], which are popular methods to analyze tex-

tures. With an NN classifier, we obtained accuracies of

36.8% ± 3.9 and 33.7% ± 4.0 for LBP and Gabor filters,

respectively. This clearly shows the difficulty of this task

and the notable improvement achieved by using CovDs.

With this dataset, we also evaluated the performance of

the Euclidean metric and asymmetric Burg divergence in

RKHS. We obtained 52.4% and 63.5% accuracy for the Eu-

clidean metric and the Burg divergence, respectively. This

indicates that a simple Euclidean metric is poorly-suited to

handle CovDs. In the remainder of this section, we focus

on the Stein and Jeffreys divergences.

5.2. Material Categorization

We then used the KTH-TIPS2b dataset [4] to perform

material categorization. KTH-TIPS2b contains images of

11 materials captured under 4 different illuminations, in 3

poses and at 9 scales. This yields a total of 3× 4× 9 = 108
images for each sample in a category, with 4 samples per

material. We resized the original images to 128 × 128 pix-

els and generated CovDs from 1024 observations computed

on a coarse grid (i.e., every 4 pixels horizontally and ver-

tically). At each point on the grid, we extracted the 23-

dimensional feature vector

xu,v =

[
ru,v, gu,v, b(u, v),

∣∣G0,0
u,v

∣∣, · · · , ∣∣G4,5
u,v

∣∣ ]T ,
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Figure 3: Samples from the Kylberg texture dataset [13].

Table 4: Recognition accuracies for the Kylberg dataset [13].

Method Recognition Accuracy
J-NN 77.00%± 1.40
S-NN 77.02%± 1.37
CDL [25] 79.87%± 1.06
J-SVM 82.19%± 1.30
S-SVM 81.27%± 1.07

JH-NN 84.89%± 1.06
SH-NN 84.91%± 1.08

JH-SVM 91.25%± 1.33
SH-SVM 91.36%± 1.27

where ru,v , gu,v and bu,v are the color intensities, and Go,s
u,v

are the same Gabor filter responses as before.

In Table 3, we report the recognition accuracies com-

puted by training on 3 samples per category and testing on

the remaining sample. On average, with an NN classifier,

our infinite-dimensional CovDs outperform the 23 × 23-

dimensional ones by more than 4%. As before, kernel SVM

further improves the performance of all CovDs. This yields

a maximum average accuracy of 80.1% for our SH-SVM,

which, to the best of our knowledge, is state-of-the-art on

this dataset [16].

5.3. Texture Classification

For texture classification, we used the Kylberg

dataset [13] that contains 28 texture classes of different nat-

ural and man-made surfaces. Each class has 160 unique

samples imaged with and without rotation. Samples from

this dataset are shown in Fig. 3.

As in Section 5.2, we resized the images to 128 × 128
pixels and generated CovDs from 1024 observations ob-

tained on a coarse grid. The feature vector at each pixel

on this grid was taken as

xu,v =

[
Iu,v,

∣∣∣∣∂I∂u
∣∣∣∣ , ∣∣∣∣∂I∂v

∣∣∣∣ , ∣∣∣∣∂2I

∂u2

∣∣∣∣ , ∣∣∣∣∂2I

∂v2

∣∣∣∣ ]T
.

We randomly selected 5 images in each class for training

and used the remaining ones as test data.

In Table 4, we report recognition accuracies averaged

over 10 such random partitions. As before, NN on infinite-

dimensional CovDs clearly outperforms NN on 5 × 5-

dimensional CovDs. Interestingly, it even outperforms the

Table 5: Recognition accuracies for the ETHZ dataset [6].

Method Seq#1 Seq#2
J-NN 80.7%± 1.5 77.2%± 1.2
S-NN 81.3%± 1.5 77.9%± 1.1
SDALF [1] 83.4%±N/A 83.4%±N/A
J-SVM 83.4%± 1.0 83.1%± 1.2
S-SVM 84.4%± 1.0 84.2%± 1.3

JH-NN 85.7%± 1.7 84.3%± 1.8
SH-NN 85.9%± 1.7 84.5%± 1.8

JH-SVM 89.1%± 1.1 90.9%± 1.1
SH-SVM 90.2%± 1.0 91.4%± 0.8

more involved CDL method. With kernel SVM, the accura-

cies of our JH and SH divergences are improved to 91%.

5.4. Person Re-identification

For person re-identification, we used two sequences from

the ETHZ dataset [6]. Sequence 1 contains 83 pedestrians

in 4,857 images, and Sequence 2 contains 35 pedestrians

in 1,936 images. We resized all images to 48 × 24 pixels,

and, at each pixel u = (u, v), computed the 17-dimensional

feature vector

xu=
[
u, ru, gu, bu, ṙu, ġu, ḃu, r̈u, g̈u, b̈u

]T
,

where ru, gu and bu are the color intensities, and,

e.g., for the r channel, ṙu=
( |∂r/∂u| , |∂r/∂v| ) and

r̈u=
( ∣∣∂2r

/
∂u2

∣∣ , ∣∣∂2r
/
∂v2

∣∣ ). Following [1], we ran-

domly selected 10 images from each subject for training and

used the rest for testing.

In Table 5, we report the accuracies averaged over 10

random partitions. In addition to the usual baselines, we re-

port the state-of-the-art results obtained with the Symmetry-

Driven Accumulation of Local Features (SDALF) of [1].

Once again, both JH-NN and SH-NN outperform J-NN
and S-NN, and similarly for SVM. More importantly, JH-
NN and SH-NN outperform SDALF, and even more so with

kernel SVM. In supplementary material, we provide the

Cumulative Matching Characteristic (CMC) curves that are

commonly used for person re-identification.

5.5. Action Recognition from Motion Capture Data

Finally, we performed an experiment on human ac-

tion recognition from motion capture sequences using the

HDM05 database [18], which contains 14 different actions.

Each action is represented by the 3D locations of 31 joints

over time. In our experiments, we only used the 4 joints

corresponding to arms and legs. This let us compute a 12-

dimensional feature vector per frame by concatenating the

3D locations of these 4 joints in that frame. The CovDs
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Table 6: Recognition accuracies for the HDM05 database [18].

Method Recognition Accuracy
J-NN 47.3%± 7.0
S-NN 47.8%± 7.4
CDL [25] 65.3%± 8.9
J-SVM 50.8%± 8.4
S-SVM 56.8%± 11.5

JH-NN 63.3%± 9.4
SH-NN 65.9%± 12.8

JH-SVM 70.8%± 8.1
SH-SVM 73.3%± 11.4

are then computed over the frames. We used a leave-one-

subject-out setup, where 4 out of the 5 available subjects

were used for training and the remaining one for testing.

In Table 6, we report the average accuracies over the

5 runs. Again, infinite-dimensional CovDs outperform the

ones computed from the original observations and yield the

best results when used in conjunction with kernel SVM.

6. Conclusions and Future Work
We have introduced an approach to computing infinite-

dimensional CovDs, as well as several Bregman diver-

gences to compare them. Our experimental evaluation has

demonstrated that the resulting infinite-dimensional CovDs

lead to state-of-the art recognition accuracies on several

challenging datasets. In the future, we intend to explore

how other types of similarity measures, such as the AIRM,

can be computed over infinite-dimensional CovDs. Further-

more, we are interested in studying how the Fréchet mean of

a set of infinite-dimensional CovDs can be evaluated. This

would allow us to perform clustering, and would therefore

pave the way to extending well-known methods, such as bag

of words, to infinite dimensional CovDs.
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